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• Identify the challenges involved in deploying a variety of
surgical robots in the battlefield.

• Discuss how knowledge gained from the simulation
environment can be leveraged to accelerate learning in
deployable robots with different kinematic chains.

• Understand the relationship between surgical gestures
and robotics performance using common machine
learning methods.
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Project Overview Results on Transfer learning

Results show that the source domain can be used to augment the training
data to build learning models in the target domain. The implications of
this are that surgical data from the OR can be used for deployable surgical
robots on the battlefield.
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Conclusions

Surgeme classification results show that using simulation data during
training enhances the performance on the real robot with limited data.
We obtained an accuracy of 55% on the real Taurus training only on
simulator data, yet that accuracy improved to 82% when the ratio of real
to simulated data was increased to 0.18 in the training set. The inclusion
of image features increased the classification accuracy of the models
solely based on robot kinematics.

We created the DESK (Dexterous Surgical Skill), a database of surgical
gestures collected using three diverse robotic platforms.

Future battlefield medical operations call for robotic systems
that can provide patient care at the point of injury.
Autonomous behavior in such systems is key for situations
of limited bandwidth, latency, and loss-of-signal. Skills
learned in controlled scenarios, where data is abundant,
should be transferable to deployable system where data
might be limited. We trained three supervised models using two sets of features:

Our experiments displayed the knowledge transfer of surgical skills
from source (controlled domain) to target scenario (potentially
austere). The source domain was a simulated Taurus platform, and the
target domain were the real robots (Taurus and YuMi). The models
were trained with data coming from the simulator and real domains.
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Figure 1. Deployable surgical robots on the battlefield 

Figure 3. Robot systems in the DESK dataset
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Figure 2. Library of robotic skills
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Figure 6. Results of skill transfer from controlled scenarios to dissimilar robotic platforms
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Figure 5. Architecture of machine learning framework for surgme classification
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